Unit 1 Foundations of Cell Biology: Molecules, Macromolecules, and Chemical Energy
Chapter 1 Entering the Fascinating World of Cells
Module 1.1 Preparing for an Adventure
Lesson 1. An Introduction to Interactive Cell Biology
Lesson 2. Understanding the Past to Understand the Present
Lesson 3. Perspective is Everything
Lesson 4. What's in a Name?
Lesson 5. Appreciating Scale. Entering the World of Cells and Macromolecules
Lesson 6. The Continuity between the Cellular and Molecular Worlds
Module 1.2 An Introduction to Cells
Lesson 1. Bacteria and Archaea
Lesson 2. The Prokaryotic/Eukaryotic Classification System
Lesson 3. Prokaryotic Characteristics
Lesson 4. Eukaryote Characteristics
Lesson 5. Single-Celled Eukaryotes
Lesson 6. Our Journey through a Model Cell
Module 1.3 How We Know: Techniques in Cell Biology
Lesson 1. Examining Cells with Light and Fluorescence Microscopy
Lesson 2. Examining Subcellular Structures with Electron Microscopy
Lesson 3. Solving Molecular Structures with X-Ray Crystallography
Lesson 4. Segregating Cell and Molecular Components: Electrophoresis, Western Blotting, Chromotography, and Centrifugation (TBD)
Lesson 5. Genetic Manipulation: PCR and Cloning (TBD)
Lesson 6. A Roadmap of Our Journey Ahead
THE HUMAN CONNECTION Seeing inside a Cell
Chapter 2 The Building Blocks of Cells: Molecules and Macromolecules
Module 2.1 Carbon Backbones and Functional Side Groups
Lesson 1. Carbon: The Molecular Backbone
Lesson 2. Functional Groups
Lesson 3. Biological Molecules
Module 2.2 The Four Categories of Biological Molecules

Lesson 1. Carbohydrates

Lesson 2. Nucleotides

Lesson 3. Amino Acids

Lesson 4. Lipids

Module 2.3 Macromolecules and Macromolecular-Like Structures

Lesson 1. Introduction to Macromolecules

Lesson 2. From Carbohydrates to Polysaccharides

Lesson 3. From Nucleotides to Nucleic Acids

Lesson 4. From Amino Acids to Proteins

Lesson 5. From Lipids to Lipid Membranes

THE HUMAN CONNECTION Essential Nutrients

Chapter 3 A Closer Look at DNA and Proteins

Module 3.1 DNA Structure

Lesson 1. DNA Is Polar and Antiparallel

Lesson 2. The Nitrogenous Bases

Lesson 3. Complementary Base Pairing

Lesson 4. The Double Helix

Lesson 5. DNA Major and Minor Grooves

Module 3.2 Protein Structure

Lesson 1. The Four Hierarchical Levels of Protein Structure

Lesson 2. Primary Structure

Lesson 3. Secondary Structure: α -Helices

Lesson 4. Secondary Structure: β-Sheets

Lesson 5. Motifs and Domains

Lesson 6. Tertiary Structure

Lesson 7. Quaternary Structure

Module 3.3 Protein Function

Lesson 1. Proteins Are Molecular Machines

Lesson 2. Proteins Function by Undergoing Conformational Changes

Lesson 3. Inducing Conformational Change

Lesson 4. Protein Binding Affinity

Lesson 5. Regulating Protein Activity with On/Off Switches

esson 6. Regulating Protein Activity with Timed Switches
HE HUMAN CONNECTION Huntington's Disease
hapter 4 Lipid Membranes and Cell Compartmentalization
lodule 4.1 Lipid Membrane Structure
esson 1. Lipid Membranes Compartmentalize Biological Solutions
esson 2. Phospholipid Structure
esson 3. Hydrophobic Interactions Explained
esson 4. Micelles and Liposomes
esson 5. A Hydrophobic Barrier
Iodule 4.2 Membrane Protein Structure
esson 1. Protein Control of Phospholipid Bilayers
esson 2. Integral and Peripheral Membrane Proteins
esson 3. Transmembrane Proteins
esson 4. Transmembrane Domains
esson 5. Examples of Transmembran Proteins
esson 6. Stuck in the Middle
esson 7. Membrane Proteins Can Shape Lipid Membranes
Iodule 4.3 The Fluid Mosiac Nature of Lipid Membranes
esson 1. The Two-Dimensional Fluidity of Lipid Membranes
esson 2. Regulating Membrane Fluidity
esson 3. Asymmentry in Lipid Membranes
esson 4. Lipid Rafts
Iodule 4.4 Protein-Based Compartmentalization
esson 1. Biomolecular Condensates
esson 2. Bacterial Microcompartments
HE HUMAN CONNECTION Lyme Disease Bacterium
hapter 5 Cells Are Powered by Chemical Energy
Iodule 5.1 Chemical Energy Explained
esson 1. Follow the Energy: A Straight Path through the Macromolecular Web

Lesson 4. The Evolution of the Ribosome	
Lesson 3. The rRNA Core: A Window into the Past	
Lesson 2. Following the Evidence to the Ribosomal Core	
Lesson 1. All Cellular Function Revolves Around Ribosomes	
Module 6.2 Life Began in the Heart of a Ribosome	
Lesson 4. Evolution Holds the Answer	
Lesson 3. Where to Begin, the Chicken or the Egg?	
Lesson 2. Getting to the Center of the Central Dogma	
Lesson 1. Protein Production: The Functional Backbone of a Cell	
Module 6.1 Looking through the Lens of Evolution	
Chapter 6 Ancient Ribosomes: The Nucleolus, Nucleus, and Nucleic Acids (DNA and RNA)	
Unit 2 The Functional Backbone: From the Nucleolus to the Endomembrane System	
THE HUMAN CONNECTION Leigh Syndrome	
Lesson 2. From ATPases to Enzymes to All Cellular Proteins	
Lesson 1. Webs of Energy Flow and Chemical Reactions	
Module 5.3 From ATP to Everything Else	
Lesson 5. Most ATP Is Used to Build Proteins	
Lesson 4. ATP Hydrolysis Powers Molecular Movement	
Lesson 3. Setting the Stage for ATP Hydrolysis	
Lesson 2. ATPase Enzymes Are Powered by ATP Hydrolysis	
Lesson 1. From Sunlight to Glucose to ATP	
Module 5.3 Using Chemical Energy: ATP Hydrolysis	
Lesson 3. Enzymes Catalyze Chemical Reactions	
Lesson 2. Sources of Activation Energy	
Lesson 1. Activate before Use	
Module 5.2 Releasing Chemical Energy with Enzyme Catalysts	
Lesson 6. From Potential to Kinetic and Back Again	
Lesson 5. From Tug-of-War to Ball and Cliff	
Lesson 4. High-Energy and Low-Energy Covalent Bonds	
Lesson 3. Electronegativity: Who Wants It More?	
Lesson 2. Electron Tug-of-War and Chemical Potential Energy	

Lesson 5. Ancient RNA Relics Persist Today
Module 6.3 The Nucleolus: Our Starting Point
Lesson 1. Our Journey Begins!
Lesson 2. Clusters and Copies of rDNA
Lesson 3. rRNA Transcription and Processing
Lesson 4. Nucleolar Christmas Trees
Lesson 5. Nucleolar Subcompartments
Module 6.4 The Nucleus: DNA and Chromosomes
Lesson 1. The Nucleoplasm and Chromosomes
Lesson 2. Nucleosomes: The First Level of DNA Packaging
Lesson 3. Higher-Level DNA Packaging
Lesson 4. Histone Modifications Control DNA Packaging
Lesson 5. The Fully Condensed Chromosome
Lesson 6. The Nuclear Envelope
THE HUMAN CONNECTION Ribosomopahies and Diamond-Blackfan Anemia (DBA)
Chapter 7 From DNA to mRNA: Transcribing the Code of Life
Module 7.1 An Overview of Transcription
Lesson 1. Setting the Stage for Transcription and Translation
Lesson 2. RNA Polymerase Binding and Transcription Bubble Formation
Lesson 3. mRNA Polymerization
Lesson 4. The mRNA Product
Module 7.2 Transcription in Bacteria
Lesson 1. Transcription Initiation
Lesson 2. Open Complex Formation
Lesson 2. Open Complex Formation Lesson 3. Transcription Elongation
Lesson 3. Transcription Elongation
Lesson 3. Transcription Elongation Lesson 4. Intrinsic Termination
Lesson 3. Transcription Elongation Lesson 4. Intrinsic Termination Lesson 5. Rho-Dependent Termination
Lesson 3. Transcription Elongation Lesson 4. Intrinsic Termination Lesson 5. Rho-Dependent Termination Module 7.3 Differences between Bacterial, Archaeal, and Eukaryotic Transcription
Lesson 3. Transcription Elongation Lesson 4. Intrinsic Termination Lesson 5. Rho-Dependent Termination Module 7.3 Differences between Bacterial, Archaeal, and Eukaryotic Transcription Lesson 1. RNA Polymerases

Lesson 4. Polycistronic mRNA and Intron Splicing

Lesson 5. Termination and mRNA Processing

Module 7.4 Transcription in Eukaryotes

Lesson 1. Promoters Recruit General Transcription Factors

Lesson 2. TFIID, TFIIA, and TFIIB

Lesson 3. RNA Polymerase II, TFIIF, TFIIE, TFIIH, and Mediator

Lesson 4. Open Complex Formation and Phosphorylation of the C-Terminal Tail of RNA Polymerase II

Lesson 5. Polymerase Escape and the NELF/DSIF Checkpoint

Lesson 6. Releasing Checkpoint Inhibition

THE HUMAN CONNECTION Drug Inhibitors of RNA Polymerase II

Chapter 8 From mRNA to Protein: Processing and Translating the Code of Life

Module 8.1 Eukaryotic mRNA Processing

Lesson 1. From Nascent Pre-mRNA to mRNA

Lesson 2. The 5' Cap

Lesson 3. Capping Is a Three-Step Process

Lesson 4. Splicing Out the Introns

Lesson 5. The Spliceosome in Action

Lesson 6. 3' Polyadenylation and Transcription Termination

Lesson 7. Exporting the mRNA to the Cytosol

Module 8.2 Setting the Stage for Translation

Lesson 1. From Abstract Code to Tangible Machine

Lesson 2. The Genetic Code

Lesson 3. Ribosome Structure

Lesson 4. The Ribosome Central Chamber

Lesson 5. tRNA Adaptors: From Nucleotides to Amino Acids

Module 8.3 Translation Initiation, Elongation, and Termination

Lesson 1. Bacterial, Archaeal, and Eukaryotic Translation

Lesson 2. Bacterial Translation Initiation

Lesson 3. Bacterial vs. Eukaryotic Translation Initiation

Lesson 4. Eukaryotic Translation Initiation
Lesson 5. Translation Elongation: Entering the A-Site
Lesson 6. Translation Elongation: Polymerization and Ratcheting
Lesson 7. Translation Termination
Lesson 8. Putting It All Together
THE HUMAN CONNECTION IPEX Syndrome and Polyadenylation
Chapter 9 The Regulation of Protein Production
Module 9.1 Regulation Is Necessary
Lesson 1. Different Proteins through Space and Time
Lesson 2. Regulation Is Dynamic
Lesson 3. To Transcribe or Not to Transcribe
Lesson 4. Transcription Factors
Module 9.2 Regulation of Transcription in Bacteria: The <i>lac</i> Operon
Lesson 1. It's All about Efficiency
Lesson 2. The <i>lac</i> Operon
Lesson 3. Glucose and Lactose: Four Possible Combinations
Lesson 4. Lactose Detection: The Repressor and the Operators
Lesson 5. Glucose Detection: The Catabolite Activator Protein (CAP)
Lesson 6. Summary of <i>lac</i> Operon Regulation
Module 9.3 Regulation of Protein Production in Eukaryotes
Lesson 1. Unpackage before Use: Chromatin Remodeling for Transcriptional Regulation
Lesson 2: Regulation at a Distance
Lesson 3. All for One and One for All
Lesson 4. Regulation of Alternative Splicing
Lesson 5. Regulation of Translation Initiation
Module 9.4 Degradation of mRNA and Protein
Lesson 1. The Balance between Production and Degradation
Lesson 2. Degrading mRNA from the Ends: Poly(A) Tail and 5' Cap Integrity
Lesson 3. Degrading mRNA from Within: RNA Interference (RNAi) via RISC
Lesson 4. miRNA and siRNA Processing
Lesson 5. Differences between miRNA and siRNA

Lesson 6. Protein Degradation: The Proteasome

THE HUMAN CONNECTION Treatment of hATTR Amyloidosis with Patisiran

Chapter 10 Protein Trafficking through the Cytosol

Module 10.1 Introduction to Protein Trafficking

Lesson 1. From Production to Destination

Lesson 2. Proteins Are Targeted by Signal Sequences

Lesson 3. Introduction to Cytosolic Trafficking

Module 10.2 Trafficking into the Nucleus: Nucleocytoplasmic Transport

Lesson 1. The Nuclear Pore Complex (NPC)

Lesson 2. Nucleocytoplasmic Transport

Lesson 3. Nuclear Import and the Ran-GTP Cycle

Lesson 4. Nuclear Export and the Ran-GTP Cycle

Module 10.3 Trafficking to Mitochondria, Chloroplasts, and Peroxisomes

Lesson 1. Mitochondria and Chloroplasts Are Different from Other Organelles

Lesson 2. Trafficking to Mitochondria

Lesson 3. Trafficking to Chloroplasts

Lesson 4. Trafficking to Peroxisomes

THE HUMAN CONNECTION Niemann-Pick Type C Disease

Chapter 11 Protein Trafficking into the Endoplasmic Reticulum

Module 11.1 Introduction to the Endomembrane System

Lesson 1. The Endomembrane Environment

Lesson 2. Movement through the Endomembrane System

Lesson 3. All Aboard Golgi Airlines

Module 11.2 Entering the Rough ER and Endomembrane System

Lesson 1. Rough ER and Smooth ER

Lesson 2. The ER Signal Sequence, the Signal Recognition Particle (SRP), and the SRP Receptor

Lesson 3. Translating Soluble Proteins into the Rough ER

Lesson 4. Translating Transmembrane Proteins into the Rough ER

Module 11.3 Covalent Modifications in the Rough ER

Lesson 1. First Steps in the Rough ER: Covalent Modifications

Lesson 2. Disulfide Bond Formation

Lesson 3. Glycosylation

Lesson 4. Glycosylation Continued: Attaching the First Oligosaccharide

Module 11.4 Preparing for a Journey through the Endomembrane System

Lesson 1. Leaving the Rough ER: The First Checkpoint

Lesson 2. Checkpoints 2 to 5: Get Fixed or Die Trying

Lesson 3. Endomembranes are Asymmetrical

THE HUMAN CONNECTION SLC6A1 Epileptic Encephalopathy

Chapter 12 Protein Trafficking through the Endomembrane System

Module 12.1 Vesicle Budding and Fusion

Lesson 1. The Roadmap Ahead through the Endomembrane Trafficking System

Lesson 2. An Introduction to Vesicle Budding and Fusion

Lesson 3. Vesicle Formation and Coat Assembly

Lesson 4. Vesicle Budding and Coat Disassembly

Lesson 5. Vesicle Docking and Fusion

Lesson 6. v-SNARE Recycling: Setting up for the Next Fusion

Module 12.2 Trafficking through the Golgi Apparatus

Lesson 1. A Snapshot of the Golgi

Lesson 2. Cisternal Maturation in Action

Lesson 3. Retrograde Vesicular Traffic

Lesson 4. Chemical Modification and Sorting in the Golgi

Lesson 5. Leaving the *trans*-Golgi Network with Clathrin

Module 12.3 Endosomes, Lysosomes, the Cell Membrane, and the Extracellular Solution

Lesson 1. Exocytosis: To the Cell Membrane and Extracellular Solution

Lesson 2. Endocytosis: From the Cell Membrane and Extracellular Solution

Lesson 3. Endosomes

Lesson 4. Lysosomes

Lesson 5. A Summary of the Endomembrane Trafficking System

THE HUMAN CONNECTION Botulinum Toxin Mechanism

Unit 3 Energy and Structure: Chloroplasts, Mitochondria, the Cytoskeleton, and the Cell Membrane
Chapter 13 Chloroplasts and Photosynthesis: Producing Fuel for Everyone
Module 13.1 The Evolution of Cyanobacteria and Chloroplasts
Lesson 1. Capturing Sunlight Energy for All Life on Earth
Lesson 2. The Core of Photosynthesis: Porphyrin Rings and Magnesium Ions
Lesson 3. From Cyanobacteria to Giant Redwoods
Lesson 4. Cyanobacteria and Chloroplasts: Cut from the Same Cloth
Lesson 5. Anatomy of a Chloroplast
Module 13.2 Photosynthesis Stage 1: Converting Light to Chemical Energy
Lesson 1. An Overview of Photosynthesis
Lesson 2. Capturing Light with Chlorophyll
Lesson 3: Energy Transfer through Photosystems
Lesson 4. The Photosystem II Reaction Center: Stripping Electrons from Water
Lesson 5. Cytochrome B6F: Using Electrons to Pump Protons
Lesson 6. Photosystem I: Getting Excited Again
Lesson 7. The Thylakoid Membrane: A Charged Capacitor
Lesson 8. ATP Synthase: A Molecular Turbine
Lesson 9. ATP Synthase: Plugged into the Thylakoid Membrane
Module 13.3 Photosynthesis Stage 2: Using Chemical Energy to Make Glucose
Lesson 1. An Overview of Photosynthesis Stage 2
Lesson 2. The Calvin Cycle
Lesson 3. From G3P to Glucose to All Life on Earth
THE HUMAN CONNECTION Apicoplasts in Human Health
Chapter 14 Mitochondria and Aerobic Cellular Respiration: Refining the Fuel
Module 14.1 Getting to Know Your Mitochondria
Lesson 1. The Evolution of Mitochondria
Lesson 2. Mitochondria are a Relic of History
Lesson 3. The Outer Mitochondrial Membrane and the Intermembrane Space
Lesson 7. The Inner Mitochondrial Membrane and the Mitochondrial Matrix

Module 14.2 An Introduction to Aerobic Cellular Respiration

Lesson 1. Extracting Energy from Glucose

Lesson 2. Aerobic Cellular Respiration Stage 1: The Big Picture

Lesson 3. Aerobic Cellular Respiration Stage 2: The Big Picture

Lesson 4. Redox Potential: Moving Electrons from One Molecule to Another

Lesson 5. Aerobic vs. Anaerobic Cellular Respiration

Module 14.3 Aerobic Respiration Stage 1: Extracting Electrons

Lesson 1. Glycolysis Steps 1– 5: Preparing for Electron Extraction

Lesson 2. Glycolysis Steps 6-10: Extracting 4 Electrons

Lesson 3. Fermentation: Sacrificing Electrons for ATP

Lesson 4. From Pyruvate to Acetyl-CoA: Extracting 4 More Electrons

Lesson 5. From Lipids to Acetyl-CoA: Increased Energy Production

Lesson 6. The Krebs Cycle: Extracting 16 Electrons: Steps 1-4

Lesson 7. The Krebs Cycle: Extracting 16 Electrons: Steps 5–8

Module 14.4 Aerobic Respiration Stage 2: From Electrons to Protons to ATP

Lesson 1. The Electron Transport Chain (ETC)

Lesson 2. The ETC Redox Centers

Lesson 3. Pushing and Pulling Electrons through the ETC

Lesson 4. Using Electrons to Translocate Protons

Lesson 5. The Electron Path through the Four ETC Complexes

Lesson 6. The Charged Cristae Membrane Powers ATP Synthase

THE HUMAN CONNECTION Barth Syndrome

Chapter 15 The Cytoskeleton: Shape, Strength, Roadways, and Movement

Module 15.1 The Cytoskeleton

Lesson 1. Introduction to the Cytoskeleton

Lesson 2. Components of the Cytoskeleton

Lesson 3. Evolution of the Cytoskeleton

Module 15.2 Actin Filament Structure and Function

Lesson 1. From G-Actin Monomers to Actin Filament Polymers

Lesson 2. Actin Polymerization Requires ATP

Lesson 3. Treadmilling: Balancing the Plus and Minus End of Actin Filaments
Module 15.3 Actin-Binding Proteins
Lesson 1. Actin-Binding Proteins Shape the Actin Cytoskeleton
Lesson 2. The Motor Protein Myosin
Lesson 3. The Power Stroke Cycle of the Myosin II Motor
Lesson 4. Sarcomeres and Muscle Contraction
Lesson 5. Bringing It All Together: The Migrating Fibroblast
Module 15.4 Microtubule Structure and Function
Lesson 1. Microtubule Structure
Lesson 2. The Centrosome
Lesson 3. Microtubule Polymerization Requires GTP
Module 15.5 Microtubule Motor Proteins and Higher Order Structures
Lesson 1. Kinesin Structure and Function
Lesson 2. One Foot in Front of the Other
Lesson 3. Kinesins Move Vesicles and Position Organelles
Lesson 4. Dynein Structure and Function
Lesson 5. Cillia and Flagella
Module 15.6 Intermediate Filaments
Lesson 1. Intermediate Filament Structure
Lesson 2. Strengthening Cells against Stress
Lesson 3. Different Types of Intermediate Filaments
THE HUMAN CONNECTION Tau Protein
Chapter 16 The Cell Membrane: The Gatekeeper of Life
Module 16.1 Regulating the Boundary of Life
Lesson 1. Separating Life from Non-Life
Lesson 2. Maintaining Order in a Disordered World
Lesson 3. Selective Permeability
Lesson 4. Diffusion across the Cell Membrane
Lesson 5. Proteins Regulate Transport across the Cell Membrane
Module 16.2 Concentration and Charge: Electrochemical Gradients

Lesson 1. Gradients across the Cell Membrane
Lesson 2. Cell Membrane Potential
Lesson 3. Membrane Potential Exists at the Membrane
Lesson 4. Dynamic Equilibrium and Resting Membrane Potential
Module 16.3 Active and Passive Transporters
Lesson 1. Transport Proteins Control Intracellular Composition
Lesson 2. Active and Passive Transport Membrane Proteins
Lesson 3. Active Transporters
Lesson 4. Passive Transporters
Lesson 4. Gradient-Driven Transporters/Pumps
Module 16.4 Channels
Lesson 1. Channels Are Passive Pores
Lesson 2. Channel Specificity and Regulation
Lesson 3. Ion Channel Selectivity Filters
Lesson 4. Aquaporins and Osmotic Pressures
Lesson 5. Working Together for Cell Function
THE HUMAN CONNECTION Cystic Fibrosis
Unit 4 The Working Cell: Cell Communication, the Cell Cycle, and Multicellularity
Chapter 17 Cell Communication, Signal Transduction, and Response
Module 17.1 All Cells Communicate
Lesson 1. Cell Communication: Detecting Extracellular Signals
Lesson 2. Signal Transduction: Intracellular Processing and Response
Lesson 3. Single-Celled vs. Multicellular Cell Communication, Signal Transduction, and Response
Lesson 4. Cellular and Organismal Communication, Signal Transduction, and Response
Lesson 5. Modes of Cell Communication in Multicellular Organisms
Module 17.2 Signal Transduction
Lesson 1. Receptors Detect Extracellular Signals
Lesson 2. Response Is Based on Cell Type
Lesson 3. Signal Transduction Pathways
Module 17.3 Common Signal Transduction Events

Lesson 1. Molecular Toggle Switches Using ATP
Lesson 2. Molecular Timed Switches Using GTP
Lesson 3. G-Protein Regulation
Lesson 4. Second Messengers and Signal Amplification
THE HUMAN CONNECTION Tofacitinib
Chapter 18 Signal Transduction Pathways: Messengers and Receptors
Module 18.1 Categories of Signal Receptors
Lesson 1. Gated Ion Channels
Lesson 2. G-Protein-Coupled Receptors (GPCRs)
Lesson 3. Enzyme-Coupled Receptors
Module 18.2 GPCRs and Heterotrimeric G-Proteins
Lesson 1. GPCR Activation
Lesson 2. Heterotrimeric G-Protein Activation
Lesson 3. Heterotrimeric G-Proteins Target Ion Channels
Lesson 4. Heterotrimeric G-Protein Target Membrane-Bound Enzymes
Module 18.3 GPCR Signaling Pathways
Lesson 1. The AC Signaling Pathway
Lesson 2. The PLC Signaling Pathway: PIP2, IP3, and DAG
Lesson 3. The PLC Signaling Pathway: Ca2+ and PKC
Lesson 4. Example GPCR Pathway: Regulation of Blood Glucose Concentration Part 1
Lesson 5. Example GPCR Pathway: Regulation of Blood Glucose Concentration Part 2
Module 18.4 RTK Signaling Pathways
Lesson 1. RTK Dimerization
Lesson 2. RTK Activation via Trans-Autophosphorylation
Lesson 3. Recruitment to the RTK C-Terminal Tails
Lesson 4. SH2 and PTB Domain-Containing Proteins
Lesson 5. Example RTK Pathway: MAPK
Module 18.5 Ca2+ Signaling Pathways
Lesson 1. Ca2+ and CaM
Lesson 2. CaMKII Structure and Function

Lesson 3. CaMKII Remembers THE HUMAN CONNECTION GPCRs as Drug Targets Chapter 19 The Cell Cycle and DNA Replication Module 19.1 The Life Cycle of a Cell Lesson 1. An Overview of the Cell Cycle
Chapter 19 The Cell Cycle and DNA Replication Module 19.1 The Life Cycle of a Cell
Module 19.1 The Life Cycle of a Cell
Module 19.1 The Life Cycle of a Cell
Lesson 1. An Overview of the Cell Cycle
Lesson 2. Getting Ready to Divide
Lesson 3. Cell Division
Module 19.2 DNA Replication
Lesson 1. An Overview of DNA Replication
Lesson 2. Replication Bubbles and Forks
Lesson 3. Prokaryotic vs. Eukaryotic DNA Replication
Lesson 4. Replisome Assembly: Helicase, Primase, and Topoisomerase
Lesson 5. Replisome Assembly: The Clamp Loader, the Clamp, and DNA Polymerase III
Lesson 6. DNA Polymerization
Lesson 7. DNA Replication is Semi-Discontinuous
Lesson 8. DNA Polymerase I and Ligase
Lesson 9. Telomeres and Telomerase
Module 19.3 Mitosis and Cytokinesis
Lesson 1. An Orchestra of Chromosomes and Microtubules
Lesson 2. Prophase: Chromosome Condensation
Lesson 3. Prophase: Mitotic Spindle Formation
Lesson 4. Prometaphase
Lesson 5. Metaphase
Lesson 6. Anaphase and Telophase
Lesson 7. Cytokinesis
THE HUMAN CONNECTION TP53: Guardian of the Genome
Chapter 20 Cell Cycle Regulation
Module 20.1 Checkpoints, Cyclins, and Cyclin-Dependent Kinases
Lesson 1. Checkpoints Regulate Cell Cycle Progression

Lesson 2. The Three Cell Division Checkpoints
Lesson 3. Opting Out of the Cell Cycle: G0
Lesson 4. Cyclins and CDKs Control the Checkpoints
Lesson 5. Multi-Layered Regulation of CDKs: Cyclins, Phosphorylation, and Inhibitors
Module 20.2 The G1/S Checkpoint
Lesson 1. The Point of No Return
Lesson 2. Three Layers of Regulation Working Together
Lesson 3. Responding to DNA Damage
Lesson 4. Triggering DNA Replication Initiation
Module 20.3 The G2/M and Metaphase/Anaphase Checkpoints
Lesson 1. The Phosphorylation/Dephosphorylation Balance
Lesson 2. Triggering Entry into M Phase
Lesson 3. The Metaphase/Anaphase Checkpoint
Lesson 4. APC Activation Triggers the Onset of Anaphase
THE HUMAN CONNECTION CDKL5 Deficiency Disorder
Chapter 21 From Single Cell to Multicellular Organism
Module 21.1 Connecting Cells Together
Lesson 1. From Cells to Tissues
Lesson 2. Adherens Junctions
Lesson 3. Desmosomes and Hemidesmosomes
Lesson 4. Tight Junctions, Gap Junctions, and Plasmodesmata
Lesson 5. Epithelial Cells and Tissues
Lesson 6. Epithelial Cell Polarity Is Maintained by Tight Junctions
Lesson 7. Shaping Epithelial Tissue with Adhesion Belts
Module 21.2 Beyond the Cell: The Extracellular Matrix
Lesson 1. Introduction to the Extracellular Matrix
Lesson 2. Plant Cell Extracellular Matrix
Lesson 3. Synthesizing and Depositing Cellulose Microfibrils
Lesson 4. Animal Cell Extracellular Matrix
Lesson 5. Collagen

Lesson 6. Polysaccharide Gels
Lesson 7. Integrin and Fibronectin
Module 21.3 Apoptosis
Lesson 1. Programmed Cell Death
Lesson 2. Apoptotic Molecular Machinery
Lesson 3. Intrinsic and Extrinsic Apoptosis
Module 21.4 Cancer
Lesson 1. The Selfish Gene
Lesson 2. Cancer-Causing Mutations
Lesson 3. Tumor Suppressor Genes and Oncogenes
Lesson 4. Characteristics of Cancer Cells
THE HUMAN CONNECTION Epidermolysis Bullosa